Volume 15 : Number 3 : Paper 1

December 2012 Selected papers from HPCLatAM2012
Title:
Parallel Adaptive Simulation of Coupled Incompressible Viscous Flow and Advective-Diffusive Transport Using Stabilized FEM Formulation

Authors and Affiliations:
André L. Rossa, Engineering Simulation and Scientific Software, Rio de Janeiro, Brazil
Alvaro L.G.A. Coutinho, High-Performance Computing Center, Department of Civil Engineering, UFRJ, Rio de Janeiro, Brazil

Abstract:
In this work we study coupled incompressible viscous flow and advective-diffusive transport of a scalar. Both the Navier-Stokes
and transport equations are solved using an Eulerian approach. The SUPG/PSPG stabilized finite element formulation is applied for the
governing equations. The implementation is held using the libMEsh finite element library which provides support for parallel adaptive
mesh refinement and coarsening. The Rayleigh-Bénard natural convection and the planar lock-exchange density current
problems are solved to assess the adaptive parallel performance of the numerical solution.

Portuguese Abstract:
Nesse trabalho nós estudamos o escoamento incompressível de fluidos viscosos e o transporte advectivo-difusivo de um escalar.
As equações de Navier-Stokes e do transporte são resolvidas usando um esquema Euleriano. A formulação estabilizada SUPG/PSPG
do método dos elementos finitos é aplicada às equações governantes. A implementação é realizada utilizando a biblioteca de
elementos finitos libMesh que fornece suporte para refinamento/desrefinamento adaptativo de malhas em paralelo. Os problemas de
convecção natural de Rayleigh-Bénard e de corrente gravitacional em configuração lock-exchange plana são resolvidos para
avaliar o desempenho da solução numérica paralela e adaptativa.

Keywords:
Stabilized FEM formulation, incompressible flows, adaptive meshes, parallel computing

Portuguese Keywords:
Formulação estabilizada do MEF, escoamentos incompressíveis, malhas adapatativas, computação paralela

Received 2012-06-10, Revised 2012-10-01 , Editor: Sergio Nesmachnow, Esteban Mocskos
Full paper, 12 pages [ PDF, 2134 Kb ]